SMARTCHLOR PROJECTTHE INTELLIGENT CHLORINATION SYSTEM

PROJECT PROGRESS

APRIL 2018

ANITA SZABÓ, INNO-WATER INC.

Main aims of the project

- Developing a mathematical model for determining the needed chlorine dose/concentration at different points of the network based on the most important parameters affecting chlorine concentration (water age, flow rates, water quality, type and age of pipelines etc.)
- Developing a methodology for novel process control and adapt the new, patent pending electrochlorination unit
- The first step is collecting base data YEAR 1.

Tasks for Year 1.

\mathbf{IW}

- Determination of parameters affecting chlorine decay literature review, evaluation of lab results
- Examination of active chlorine concentration in the distribution system and determination of relationship of parameters describing the change of chlorine concentration
 NUPS
- Examination of active chlorine concentration in terms of water quality parameters of raw water
 BWW
- Further development of hydraulic model of Budapest drinking water distribution system with the aim of determining the necessary chlorine dose

CQM

• Provide and install lab scale and pilot chlorination devices

Topics for today

- I. Literature summary and conclusions (IW)
 - I. Parameters affecting chlorine decay in networks
 - II. Approaches of modelling chlorine decay in networks
 - III. Our own approach of modelling chlorine decay in networks
- II. Laboratory research (NUPS)
 - I. Testing the technological parameters of the laboratory scale chlorination device
 - II. Laboratory measurements of the effects of referred parameters on chlorine decay

III.Network experiments (BWW)

- I. Installing the pilot network (Engine house)
- II. Assigning sample areas on the real network

IV.Installation of pilot (CQM)

- I. Installing the pilot chlorinator (Engine house)
- II. Education of operators

LITERATURE SUMMARY AND CONCLUSIONS

BY: INNO-WATER INC.

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY PROJECT FINANCED FROM THE NRDI FUND MOMENTUM OF INNOVATION

Mechanisms affecting chlorine decay

Main reasons for decrease in residual chlorine concentration in networks:

- Contamination from external sources
 - Pipe bursts (breakage)
 - Maintenance
- Natural decay processes in pipelines and tanks
 - Reactions in the bulk water
 - Reactions on the pipe walls
 - Volatilisation

Parameters affecting chlorine decay in bulk phase

- Inorganic matters concentration
 - Iron, manganese, hydrogen sulphide, cyanides, other inorganic reducing agents
- Organic matters concentration
 - Organic nitrogen compounds, humic substances, phenols, etc.
- Physical parameters
 - Temperature
 - pH
 - Contact time (water age)

Inorganic compounds I.

Iron

- $HOCl + 2H^+ + 2Fe^{2+} \rightleftharpoons 2Fe^{3+} + Cl^- + H_2O$
- Fast reaction
- Free and combined chlorine show similar reactivity

Manganese

- Reactions similar to that of iron
- Forms insoluable manganese dioxide residue

Inorganic compounds II.

Ammonium

- $NH_4^+ + HOCl \rightarrow NH_2Cl + H^+ + H_2O$ (monochloro-amin)
- $NH_2Cl + HOCl \rightarrow NHCl_2 + H_2O$ (dichloro-amin)
- $NHCl_2 + HOCl \rightarrow NCl_3 + H_2O$ (trichloro-amin)
- End-product formation depends on Cl-N ratio

Hydrogene sulphate

- 2 H_2S + 5 Cl_2 + 4 H_2O = S + 10 HCl + H_2SO_4
- Result of biological activity under anaerobic circumstances

Organic compounds I.

Organic nitrogen compounds

- HOCl + $CH_3NH_2 \rightleftharpoons CH_3NHCl + H_2O$
- Slow reactions except for amino-acids
- Hazard of THM-formation

Organic compounds II.

Humic substances

- Slow reactions with chlorine
- Reaction rate depends on pH and temperature
- Reaction rates are highly system-specific
- High hazard of THM-formation

Organic compounds III.

Phenolic compounds

- Compounds containing phenolic groups (– C_6H_4 OH)
- Chlorinated phenols cause odour and taste problems
- Modelling is highly problematic

Physical parameters Temperature

- Chlorine decay rate increases with temperature
- Lower temperatures result in lower disinfection efficiency

pН

- Chlorine dissociation and $HOCl \leftrightarrow OCl^-$ rate is highly pH-dependent
- Hypochloric acid is more efficient in disinfection (lower pH corrosion)

Contact time

- Specific compounds have different reaction rates
- High water age usually results in low residual chlorine levels in pipe networks

Parameters affecting chlorine decay in proximity of pipe walls

- Pipe material and corrosion rate
- Pipe diameter
- Biofilm
- Flow rates

Effects of pipe material and corrosion rate

- Chlorine can react with the material of the pipe wall directly
- Coarse pipe surfaces can endorse biofilm formation
- Pipe wall corrosion affects coarseness and reactions with the pipe wall
- PVC pipes affect chlorine decay the least

Effects of pipe diameter

- Chlorine decay rates increases with decreasing diameter
- Smaller diameters result in:
 - Increased relative interfacial area
 - Increased opportunity of contact between free chlorine in bulk water and pipe wall

Effects of biofilm

- Chlorine decay rate increases with biofilm amount
- Residual chlorine reacts with organic compounds of the biofilm but microorganism inactivation rates are lower

Effects of flow rates

- Increasing flow velocity results in chlorine decay increase (greater shearing force, greater reaction surface)
- The effect of flow rate on decay rates varies with pipe material

Volatilisation

- $Cl^- + H^+ + HClO \leftrightarrows Cl_2 + H_2O$
- Volatilisation occurs mostly in tanks and pump stations
- Depends on:
 - Temperature
 - Water amount
 - Water depth
 - Water surface

Chlorine decay modelling approaches I.

Title	Governing equation	Parameters
First order	$C = C_0 \exp(-kt)$	k
2 nd order	$C = \left(kt + \left(\frac{1}{C_0}\right)^{(1)}\right)^{-1}$	k
3 rd order	$C = \left(2kt + \left(\frac{1}{C_0}\right)^2\right)^{-\frac{1}{2}}$	k
4 th order	$C = \left(3kt + \left(\frac{1}{C_0}\right)^3\right)^{-\frac{1}{3}}$	k
Limited first order	$C = C_* + (C_0 - C_*)exp(-kt)$	k
Limited 2 nd order	$C = C_* + \left(kt + \left(\frac{1}{C_0 - C_*}\right)\right)^{-1}$	k, C *
Limited 3 rd order	$C = C_* + \left(2kt + \left(\frac{1}{C_0 - C_*}\right)^2\right)^{-\frac{1}{2}}$	k, <i>C</i> *
Limited 4 th order	$C = C_* + \left(3kt + \left(\frac{1}{C_0 - C_*}\right)^3\right)^{-\frac{1}{3}}$	k, C *
Parallel first order	$C = x(C_0 - C_*)exp(-k_1t) + (1 - x)(C_0 - C_*)exp(-k_2t)$	k ₁ , k ₂ , x, <i>C</i> _*

Chlorine decay modelling approaches I.

- First order $\Rightarrow C = C_0 \exp(-kt)$
 - Reaction rate is proportional to chlorine concentration
 - Can't describe first fast reactions
- Limited models $\Rightarrow C = C_* + (C_0 C_*)exp(-kt)$
 - There is always non-reacted residual chlorine present (C*)
- Paralel first order
 - Two decay rate constants for fast and slow reactions

Chlorine decay modelling approaches I.

- First order
 - Reaction rate is proportional to chlorine concentration
 - Can't describe first fast reactions
- Limited models
 - There is always non-reacted residual chlorine present (C*)
- Parallel first order
 - Two decay rate constants for fast and slow reactions

PROJECT FINANCED FROM THE NRDI FUND *Momentum of Innovation*

Determination of k values

- $k_t = k_b + k_w$
 - k values are empirical constants for reactions in bulk and on pipe wall
- k_b varies with:
 - Temperature, initial chlorine concentration, TOC, etc.
- k_w varies with:
 - Pipe diameter, pipe material, biofilm properties, flow rates, initial chlorine concentration, etc.

Determination of k value: an example

Experiments to determine k values

- Several experiments, but no standard test
- k_b determined from glass tests (lab)
- \mathbf{k}_{t} is determined from isolated pipe segments over time
- $\bullet \ k_w$ is calculated from $k_t \ and \ k_b$

Our own approach of modeling chlorine decay in networks

- Identification of the most important parameters affecting chlorine decay;
- Determination of the relations between the compounds and the chlorine consumption (lab experiments) different *k* values and equations for different parameters;
- Development of a model calculating chlorine consumption by the most important compounds that can be measured on site;
- Validation of the model by field samplings

Thank you for your attention

PROJECT FINANCED FROM THE NRDI FUND MOMENTUM OF INNOVATION