

SMARTCHLOR PROJECT

THE INTELLIGENT CHLORINATION SYSTEM

PROJECT FINANCED FROM THE NRDI FUND

MOMENTUM OF INNOVATION

Tasks performed in session 2 - Summary

- Laboratory experiments
 - Synergistic effects of dissolved contaminants (NKE)
 - Effect of additional disinfection procedures on chlorine requirement (NKE)
 - Chlorine consumption of the biofilm (IW)
 - Effect of pipe material and pipe-bound biofilm on chlorine decrease (NKE)
- Experiments on the pilot system (FV)
- Field experiments, tests on the network (FV)
- Algorithm improvement, model building, tests (IW)

Laboratory experiments - Synergistic effects of dissolved contaminants

PROJECT
FINANCED FROM
THE NRDI FUND
MOMENTUM OF INNOVATION

Laboratory experiments - Effect of additional disinfection procedures on chlorine requirement

- reverse osmosis
- ultrafiltration
- ozone treatment
- activated carbon
- biologically active carbon
- sand filtration

Laboratory experiments - Chlorine consumption of the biofilm

Laboratory experiments - Effect of pipe features on chlorine decrease

Reactor made from HDPE pipe via adhesive and coverage

Reactor made from asbestos-cement pipe via adhesive and coverage

Survey of chlorine decrease in the pilot network system

Field experiments – Step 1: Estimated water age

Results

- Selection of sampling points
- Planning of the sampling schedule

Average 24-hour water age values

Field experiments – Step 2-3: Real water age chlorine decrease

Estimated and real water age values in the sampling period

Results

- Determination of real watere age
- Calculation of chlorine decrease

PROJECT
FINANCED FROM
THE NRDI FUND
MOMENTUM OF INNOVATION

Structure of the developed model

- Sedimentation and transport model
- Chlorine decrease model (solved species: iron, manganese, ammonium)
- Chlorine decrease model (sediment)

Sedimentation and transport model

Sediment formations

$$\frac{\partial M(MLSS_{sediment})}{\partial t} = |k_1 * v_{avg} + k_2| * v_{avg} * D^3L * k_3$$

Sediment resuspension

$$\frac{\partial C(MLSS_{suspended})}{\partial t} = \frac{1}{1 + e^{(-35v_{\acute{a}tl} + 8)}} C(MLSS_{sediment})$$

$$\frac{\partial C(MLSS_{sediment})}{\partial t} = -\frac{1}{1 + e^{(-35v_{avg} + 8)}} C(MLSS_{sediment})$$

• Sedimentation of the suspended solids

$$\frac{\partial C(XMLSS_{sediment})}{\partial t} = \frac{v_{\ddot{u}} C(MLSS_{suspended})}{D} \max(0; 1 - \frac{a * C_{MLSS_sediment}}{K_{MLSS_sediment} + C_{MLSS \ \ddot{u}led\acute{e}k}}$$

$$\frac{\partial C(XMLSS_{suspended})}{\partial t} = -\frac{v_{\ddot{u}} \ C(MLSS_{suspended})}{D} \max(0; 1 - \frac{\alpha * \ C_{MLSS_sediment}}{K_{MLSS_sediment} + C_{MLSS\ sediment}}$$

Chlorine decrease equations in the model describing the effect of solved iron, manganese and ammonium

• Fe $\frac{\partial Cl}{\partial t} [hours] = a_1 + a_2 * Fe * Cl + a_3 * Cl + a_4 * (Cl - a_5)^2 + a_6 * e^{a_7 * (Cl * Fe * a_8) + a_9} + a_{10} * e^{a_{11} * (Cl + a_{12}) * Fe}]$

Parameters in Fe	\mathbf{a}_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a ₁₀	a ₁₁	a ₁₂
eq.	1,378	-2	-0,323	-0,6	0,604	0,947	-1,8	8,5	-1,4	-1,38	-0,61	0,264

• **Mn**: no effect

• $\mathbf{NH_4}^+$ $\frac{\partial Cl}{\partial t}[hours] = a_1 + a_2 * a_6^{a_3*(Cl + a_4*(Cl - Cl_0*a_7) + a_5)} * \frac{1}{Cl0^{0.68}} * a_8 * NH4^{a_{10}} + a_9 * 1/(1 * a_{11} + Cl) + 0.2$

Parameters in	$\mathbf{a_1}$	a_2	a_3	$\mathbf{a_4}$	a_5	a_6	\mathbf{a}_7	a_8	a_9	a ₁₀	a ₁₁
NH4 eq.	0,05	-10	1	17	-3,28	1,8	0,9	4	-0,2	1	0,9

Chlorine decrease equations in the model describing the effect of the sediment

$$\frac{\partial Cl}{dt} \text{ [hours]} = \min(-0.005 * C_{inert}; \sqrt[3]{\frac{C(MLSS_{sediment})}{36}} * [a_1 + a_{10} * [a_2 * \sqrt{C_{inert}} + a_3 * Cl + a_4 * (Cl * a_5 - a_6)^2 + a_7 * e^{(Cl * \sqrt{C_{inert}} * a_8) + a_9}$$

Parameters in	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	a_4	a_5	\mathbf{a}_6	\mathbf{a}_7	a_8	a_9	a ₁₀
sediment eq.	0,24	1,15	-1,7	-4	-0,8	-0,646	2,8	-5	-0,78	0,6

Test results with the developed model (sedimentation and chlorine decrease)

The amount of sediment deposited on the pipelines per surface area

Chlorine concentration in the pipelines

www.innowater.hu

PROJECT
FINANCED FROM
THE NRDI FUND
MOMENTUM OF INNOVATION