Budapest University of Technology and Economics

Department of Sanitary and Environmental Engineering

EXPERIMENTS IN AEROBIC WASTEWATER TREATMENT IN MEMBRANE BIOREACTORS

Anita Szabó

Definition of membrane

- Membrane
 - a selective barrier between two phases
 - transport one component more readily than others

Two-phase system separated by a membrane

Cross-section of membrane

Membrane Filtration Processes

Membrane bioreactors: most often microfiltration

Membrane Bioreactors (MBRs)

- combine membrane filtration with biological wastewater treatment
- most often replace the secondary sedimentation, providing a complete separation and retention of biomass
- = activated sludge reactor where the solid-liquid phase separation is done with the help of membrane

Membrane bioreactor & conventional treatment schemes

Membrane bioreactor (MBR) w/submerged membrane unit

Two configurations:

-Downstream low-pressure membrane unit (replace the clarifier)

-Submerged membrane unit

(Note: no direct comparison of the two has been found in the literature.)

Why Membrane Bioreactor?

Advantage

Membrane fouling Small footprint (high biomass concentration) **Complete solids removal Aeration limitations High loading rate capability Energy cost Effluent disinfection** Low sludge production (0.23 kgSS/kgCOD removed) High SRT allowing slow-growing organisms to accumulate **Combined COD, solids and nutrient removal in a single unit Rapid start up** Sludge bulking not a problem **Modular/Retrofit**

Disadvantage

Laboratory experiments at the Dep. of Civil and Environmental Eng., Stanford University (USA) for examining the operation of an aerobic MBR.

Objectives:

- determining the maximum membrane flux that can be sustained in long term
- tracking the variation of flux and transmembrane pressure during the operation
- examining the effects of different operational parameters (backwash, initial flux) and low pH (<6) on MBR performance (fouling, pollutant removal efficiency)
- experience for the start-up and operation of a MBR

Ceramic Membrane Unit

Kubota ceramic membrane 0.1 μm pore size 0,06 m² total surface

Composition of synthetic wastewater

Chemicals	Influent Concentration (mg/L)
COD (as CH ₃ COONa)	108 (76-145)
NH ₄ – N (as NH ₄ Cl)	63 (59-72)
P (15% K ₂ HPO ₄ & 85% KH ₂ PO ₄)	11 (10.1-11.4)
Yeast extract	5 (based on calculation)

Measurements

- Transmembrane pressure (negative pressure = suction applied to the membrane)
- Water flow
- Chemical parameters: COD, NH₄-N, NO₃-N, PO₄-P in the
 - influent
 - reactor
 - effluent

Operation periods

Operation periods

- **1. Unstable conditions**
- 2. 10 minutes backwash periods
- 3. Equalization tank installed, inflow and outflow rates: 0.72 L/h
- 4. Lower pump speed, longer backflush periods

Stops

Only aeration Only aeration Chemical treatment

Results

- **10 min. backflush helps** - restoration >1.75 L/h 3. 0.8 L/h
- 52 90.5 kPa severe fouling 3.
- <50 kPa for 3 days 4.

4. 1.5-1.7 L/h (lower pump speed)

Effect of backwash and physical cleaning

- Regular backwash: 50 seconds in every half an hour
- Helps mitigating fouling
- Beginning of each period: lower TMP and higher flux
- 10 min backwash + physical cleaning recovered the permeability:
- TMP = 85 kPa
 - ⇒ 10 min backwash: 75 kPa
 - ⇒ 10 min backwash + phys cleaning: <40 kPa

Chemical parameters of the effluent

- No pH control until 3/13
- after that NaHCO₃ was added
 pH is low in the first periods

- NH₄-N
 - high for long time
 - by the end of Period 3. it reached 15 mg/L
 - at the very end: only 2-4 mg/L
- NO_3 -N
 - stable until 3/13
 - by the end almost all NH₄ converted to oxidised forms

- COD
 - usually <30 mg/L
- **PO4-P**

•

Practically no removal

Pollutant removal rates

- NH₄-N
 - Below 40% when low pH
 - >90 % at th end
- COD
 - 75-90%
 - No significant change

Conclusions (1)

- very rapid fouling during the experiment
- actions like backwashing and physical or chemical cleaning restore the majority of membrane permeability
- more frequent short time backwashing, regular 10 min backwashing and physical/chemical cleaning is necessary
- backwash with air or with the combination of air and water should also be tested.
- higher aeration rate can be applied to increase shear in the vicinity of the membrane surface

Conclusions (2)

- Automatic system control is needed in order to keep constant membrane flux and stable hydraulic conditions. Real time monitoring of flow rate and transmembrane pressure is necessary for control.
- No higher flow rate than 1.8 L/h (720 L/m²/d) is recommended with this specific membrane module.
- Sodium hydro-carbonate should be added continuously to ensure the favourable pH range for nitrifiers (between 6.8 - 8). (online pH meter and buffer self-feeding)

Thank you

Simplistic illustrations of particles' effect on surface and performance

(i) No effect; (ii) concentration polarization;(iii) Gel polarization; (iv) adsorptive fouling

Hydraulic and sludge retention times

- Independent HRT and SRT
- high biomass concentration = high sludge age

	MBR typical	MBR extreme	AS
HRT	2.24		
(h)	2-24		
SRT	>15 (20)	infinito	Q 15
(d)	~15 (30)	mmme	0-15
MLSS	15 000 35 000	80.000	3000 7000
(mg/l)	13 000 - 33 000	00 000	3000 - 7000

Biomass concentration

- MLSS >35 000 mg/l operational problems
 - Oxygen transfer
 - Viscosity (mixing)
 - Membrane flux

Flux

- 5-300 l/m²/h
- Depends on:
 - Transmembrane pressure
 - Crossflow velocity
 - Pore size
 - Biomass characteristics

Energy consumption

- High oxygen consumption
 - High biomass concentration
 - High minimum maintenance energy
- 2-10 kWh/m³ (50-150 l/m²/h)
- 10 times lower if submerged

Treatment performance

	Removal	mg/l
TSS	up to 99.9%	5
COD	<u>60-99%</u>	40
BOD ₅	<u>60-99%</u>	5-30
TN	85-99%	~10mg/L
ТР	11-75% (97%)	~1mg/L